Tuesday, May 14, 2019
Organic memory transistor Essay Example | Topics and Well Written Essays - 750 words
Organic memory transistor - Essay ExampleThey (Fakher & Mabrooka, 2012) reported that the output characteristics for both the devices provide perfect and good saturation area at low and high voltage VDS respectively. They also name out that, in the control device, the mobility (), the threshold and the on/ out rotation were 0.27cm2 V-1S-1, 16V and 4.1 X 104 respectively. However, in the thoroughgoing memory floating approach the mobility was found to be 0.04 cm2 V-1S-1, the threshold was between -23 and -47 volts while the on/off ratio was 2.3 X 103. For high mobility and increasing on/off ratio, the smooth surface, uniform and loose spliff holes where the reverse proportionality of PMMA concentration which was above 15wt%, and can be a significant influence on the average grain region and average roughness of pentacene layer. They also stated that a clear twist was there to show that there was no hysteresis in the control transistor overdue to non charge reposition element. In addition, they said that the gold floating gate of the organic memory transistor causes low mobility due to the gold nanoparticle affected to follow and carry charges from the first layer of PMMA through gold floating gate to the second layer of the PMMA in the insulator. ... That was when different pulses of OTMFTs were applied to the gate electrodes. This was evident in non-volatile state stance for the organic thin film memory transistor device. Graphene oxide and floating gate Other authors, including Tae-Wook Kim, Yan Gao, Orb Action, Hin-Lap, Hong Ma and early(a)s, also reported more or less the electrical characteristics of organic non-volatile memory transistors (ONVMTs) using chemically synthesized grapheme oxide (GO) as a charge trapping layer based on pentacene/PMMA/Grapheme oxide nanosheets/SiO2.GO (Kim, et al., 2010). the nanosheets were produced by modified lbs process then deposited on top of SiO2 substrate using spin coating and risque plate (3000 rpm for 40 s and 120C0 for 10 minutes), respectively. The drain/source contact was of gold and had a heavysetness of 50nm thick and a semiconductor layer of 50nm was deposited using thermal evaporation of pentacene. The GO nonosheets were located between PMMA and SiO2 layers of about 10nm of thickness. A clear trend, morphological properties of grapheme oxide such as rougher and coverage region were dependent on the concentration of its solution. The output and transfer characteristics of both the devices, namely control (OFETs) device without grapheme nanosheets and (ONVMTs) device in spite of appearance GO nanosheets, have similar values of mobility ), threshold and on/off ration which were 0.16 cm2V-1S-1, 6.5V and 106 respectively. On the other hand, travelling electrons or hole from pentacene to GO nanosheets through PMMA layer resulted to hysteresis which was featured in the transfer characteristics of (ONVMT) device. However, there was no hysteresis in the control (OFET) due to the abs ence of the trap charge
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.